On the Relationship between Classification Error Bounds and Training Criteria in Statistical Pattern Recognition

نویسنده

  • Hermann Ney
چکیده

We present two novel bounds for the classification error that, at the same time, can be used as practical training criteria. Unlike the bounds reported in the literature so far, these novel bounds are based on a strict distinction between the true but unknown distribution and the model distribution, which is used in the decision rule. The two bounds we derive are the squared distance and the Kullback-Leibler distance, where in both cases the distance is computed between the true distribution and the model distribution. In terms of practical training criteria, these bounds result in the squared error criterion and the mutual information (or equivocation) criterion, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان

Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of  discriminant classifiers training or  their error. In this ...

متن کامل

Posterior-Scaled MPE: Novel Discriminative Training Criteria

We recently discovered novel discriminative training criteria following a principled approach. In this approach training criteria are developed from error bounds on the global error for pattern classification tasks that depend on non-trivial loss functions. Automatic speech recognition (ASR) is a prominent example for such a task depending on the non-trivial Levenshtein loss. In this context, t...

متن کامل

Upper and Lower Tight Error Bounds for Feature Omission with an Extension to Context Reduction

In this work, fundamental analytic results in the form of error bounds are presented that quantify the effect of feature omission and selection for pattern classification in general, as well as the effect of context reduction in string classification, like automatic speech recognition, printed/handwritten character recognition, or statistical machine translation. A general simulation framework ...

متن کامل

The false discovery rate for statistical pattern recognition

Abstract: The false discovery rate (FDR) and false nondiscovery rate (FNDR) have received considerable attention in the literature on multiple testing. These performance measures are also appropriate for classification, and in this work we develop generalization error analyses for FDR and FNDR when learning a classifier from labeled training data. Unlike more conventional classification perform...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003